Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.117
Filtrar
1.
FEBS J ; 291(7): 1400-1403, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38297957

RESUMO

Reduction of the 17,18-double bond in the D-ring during chlorophyll biosynthesis is catalyzed by the rare, naturally occurring photoenzyme protochlorophyllide oxidoreductase (POR). A conserved tyrosine residue has been suggested to donate a proton to C18 of the substrate in the past decades. Taylor and colleagues scrutinized the model with a powerful tool that utilized a modified genetic code to introduce fluorinated tyrosine analogues into POR. The presented results show that the suggested catalytically critical tyrosine is unlikely to participate in the reaction chemistry but is required for substrate binding, and instead, a cysteine residue preceding the lid helix is proposed to have the role of proton donor.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Protoclorifilida , Halogenação , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Protoclorifilida/química , Prótons , Clorofila/biossíntese , Clorofila/metabolismo
2.
Biomolecules ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35327594

RESUMO

Rapeseed (Brassica napus L.) is mainly used for oil production and industrial purposes. A high photosynthetic efficiency is the premise of a high yield capable of meeting people's various demands. Chlorophyll-deficient mutants are ideal materials for studying chlorophyll biosynthesis and photosynthesis. In a previous study, we obtained the mutant yl1 for leaf yellowing throughout the growth period by ethyl methanesulfonate mutagenesis of B. napus. A genetic analysis showed that the yl1 chlorophyll-deficient phenotype was controlled by one incompletely dominant gene, which was mapped on chromosome A03 by a quantitative trait loci sequencing analysis and designated as BnA03.Chd in this study. We constructed an F2 population containing 5256 individuals to clone BnA03.Chd. Finally, BnA03.Chd was fine-mapped to a 304.7 kb interval of the B. napus 'ZS11' genome containing 58 annotated genes. Functional annotation, transcriptome, and sequence variation analyses confirmed that BnaA03g0054400ZS, a homolog of AT5G13630, was the most likely candidate gene. BnaA03g0054400ZS encodes the H subunit of Mg-chelatase. A sequence analysis revealed a single-nucleotide polymorphism (SNP), causing an amino-acid substitution from glutamic acid to lysine (Glu1349Lys). In addition, the molecular marker BnaYL1 was developed based on the SNP of BnA03.Chd, which perfectly cosegregated with the chlorophyll-deficient phenotype in two different F2 populations. Our results provide insight into the molecular mechanism underlying chlorophyll synthesis in B. napus.


Assuntos
Brassica napus , Clorofila , Brassica napus/genética , Clorofila/biossíntese , Mapeamento Cromossômico/métodos , Genes de Plantas , Fotossíntese , Locos de Características Quantitativas
3.
Plant Cell Physiol ; 63(1): 135-147, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34698867

RESUMO

In photoautotrophic Synechocystis sp. PCC 6803, NADPH is generated from photosynthesis and utilized in various metabolism, including the biosynthesis of glyceraldehyde 3-phosphate (the upstream substrate for carbon metabolism), poly(3-hydroxybutyrate) (PHB), photosynthetic pigments, and hydrogen gas (H2). Redirecting NADPH flow from one biosynthesis pathway to another has yet to be studied. Synechocystis's H2 synthesis, one of the pathways consuming NAD(P)H, was disrupted by the inactivation of hoxY and hoxH genes encoding the two catalytic subunits of hydrogenase. Such inactivation with a complete disruption of H2 synthesis led to 1.4-, 1.9-, and 2.1-fold increased cellular NAD(P)H levels when cells were cultured in normal medium (BG11), the medium without nitrate (-N), and the medium without phosphate (-P), respectively. After 49-52 d of cultivation in BG11 (when the nitrogen source in the media was depleted), the cells with disrupted H2 synthesis had 1.3-fold increased glycogen level compared to wild type of 83-85% (w/w dry weight), the highest level reported for cyanobacterial glycogen. The increased glycogen content observed by transmission electron microscopy was correlated with the increased levels of glucose 6-phosphate and glucose 1-phosphate, the two substrates in glycogen synthesis. Disrupted H2 synthesis also enhanced PHB accumulation up to 1.4-fold under -P and 1.6-fold under -N and increased levels of photosynthetic pigments (chlorophyll a, phycocyanin, and allophycocyanin) by 1.3- to 1.5-fold under BG11. Thus, disrupted H2 synthesis increased levels of NAD(P)H, which may be utilized for the biosynthesis of glycogen, PHB, and pigments. This strategy might be applicable for enhancing other biosynthetic pathways that utilize NAD(P)H.


Assuntos
Clorofila/biossíntese , Glicogênio/biossíntese , Hidrogênio/metabolismo , Hidroxibutiratos/metabolismo , NADP/metabolismo , Synechocystis/química , Synechocystis/genética , Synechocystis/metabolismo , Clorofila/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glicogênio/genética , Redes e Vias Metabólicas , NADP/genética
4.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768970

RESUMO

The papain-like cysteine proteases (PLCPs), the most important group of cysteine proteases, have been reported to participate in the regulation of growth, senescence, and abiotic stresses in plants. However, the functions of PLCPs and their roles in stress response in microalgae was rarely reported. The responses to different abiotic stresses in Haematococcus pluvialis were often observed, including growth regulation and astaxanthin accumulation. In this study, the cDNA of HpXBCP3 containing 1515 bp open reading frame (ORF) was firstly cloned from H. pluvialis by RT-PCR. The analysis of protein domains and molecular evolution showed that HpXBCP3 was closely related to AtXBCP3 from Arabidopsis. The expression pattern analysis revealed that it significantly responds to NaCl stress in H. pluvialis. Subsequently, transformants expressing HpXBCP3 in Chlamydomonas reinhardtii were obtained and subjected to transcriptomic analysis. Results showed that HpXBCP3 might affect the cell cycle regulation and DNA replication in transgenic Chlamydomonas, resulting in abnormal growth of transformants. Moreover, the expression of HpXBCP3 might increase the sensitivity to NaCl stress by regulating ubiquitin and the expression of WD40 proteins in microalgae. Furthermore, the expression of HpXBCP3 might improve chlorophyll content by up-regulating the expression of NADH-dependent glutamate synthases in C. reinhardtii. This study indicated for the first time that HpXBCP3 was involved in the regulation of cell growth, salt stress response, and chlorophyll synthesis in microalgae. Results in this study might enrich the understanding of PLCPs in microalgae and provide a novel perspective for studying the mechanism of environmental stress responses in H. pluvialis.


Assuntos
Proteínas de Algas/metabolismo , Clorofíceas/enzimologia , Cisteína Proteases/metabolismo , Microalgas/crescimento & desenvolvimento , Microalgas/fisiologia , Proteínas de Algas/química , Proteínas de Algas/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Chlamydomonas reinhardtii/fisiologia , Clorofíceas/genética , Clorofila/biossíntese , Cisteína Proteases/química , Cisteína Proteases/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Microalgas/genética , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Transformação Genética
5.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34639038

RESUMO

Chokecherry (Padus virginiana L.) is an important landscaping tree with high ornamental value because of its colorful purplish-red leaves (PRL). The quantifications of anthocyanins and the mechanisms of leaf color change in this species remain unknown. The potential biosynthetic and regulatory mechanisms and the accumulation patterns of anthocyanins in P. virginiana that determine three leaf colors were investigated by combined analysis of the transcriptome and the metabolome. The difference of chlorophyll, carotenoid and anthocyanin content correlated with the formation of P. virginiana leaf color. Using enrichment and correlation network analysis, we found that anthocyanin accumulation differed in different colored leaves and that the accumulation of malvidin 3-O-glucoside (violet) and pelargonidin 3-O-glucoside (orange-red) significantly correlated with the leaf color change from green to purple-red. The flavonoid biosynthesis genes (PAL, CHS and CHI) and their transcriptional regulators (MYB, HD-Zip and bHLH) exhibited specific increased expression during the purple-red periods. Two genes encoding enzymes in the anthocyanin biosynthetic pathway, UDP glucose-flavonoid 3-O-glucosyl-transferase (UFGT) and anthocyanidin 3-O-glucosyltransferase (BZ1), seem to be critical for suppressing the formation of the aforesaid anthocyanins. In PRL, the expression of the genes encoding for UGFT and BZ1 enzymes was substantially higher than in leaves of other colors and may be related with the purple-red color change. These results may facilitate genetic modification or selection for further improvement in ornamental qualities of P. virginiana.


Assuntos
Antocianinas/biossíntese , Pigmentação , Folhas de Planta/metabolismo , Prunus/fisiologia , Vias Biossintéticas , Clorofila/biossíntese , Cor , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metaboloma , Metabolômica/métodos , Pigmentação/genética , Folhas de Planta/genética , Transcriptoma
6.
Nat Plants ; 7(10): 1420-1432, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34475529

RESUMO

The assembly of light-harvesting chlorophyll-binding proteins (LHCPs) is coordinated with chlorophyll biosynthesis during chloroplast development. The ATP-independent chaperone known as chloroplast signal recognition particle 43 (cpSRP43) mediates post-translational LHCP targeting to the thylakoid membrane and also participates in tetrapyrrole biosynthesis (TBS). How these distinct actions of cpSRP43 are controlled has remained unclear. Here, we demonstrate that cpSRP43 effectively protects several TBS proteins from heat-induced aggregation and enhances their stability during leaf greening and heat shock. While the substrate-binding domain of cpSRP43 is sufficient for chaperoning LHCPs, the stabilization of TBS clients requires the chromodomain 2 of the protein. Strikingly, cpSRP54-which activates cpSRP43's LHCP-targeted function-inhibits the chaperone activity of cpSRP43 towards TBS proteins. High temperature weakens the interaction of cpSRP54 with cpSRP43, thus freeing cpSRP43 to interact with and protect the integrity of TBS proteins. Our data indicate that the temperature sensitivity of the cpSRP43-cpSRP54 complex enables cpSRP43 to serve as an autonomous chaperone for the thermoprotection of TBS proteins.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Clorofila/biossíntese , Resposta ao Choque Térmico/genética , Partícula de Reconhecimento de Sinal/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/genética , Partícula de Reconhecimento de Sinal/metabolismo
7.
Biomolecules ; 11(8)2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34439782

RESUMO

Chlorophyllides can be found in photosynthetic organisms. Generally, chlorophyllides have a-, b-, c-, d-, and f-type derivatives, and all chlorophyllides have a tetrapyrrole structure with a Mg ion at the center and a fifth isocyclic pentanone. Chlorophyllide a can be synthesized from protochlorophyllide a, divinyl chlorophyllide a, or chlorophyll. In addition, chlorophyllide a can be transformed into chlorophyllide b, chlorophyllide d, or chlorophyllide f. Chlorophyllide c can be synthesized from protochlorophyllide a or divinyl protochlorophyllide a. Chlorophyllides have been extensively used in food, medicine, and pharmaceutical applications. Furthermore, chlorophyllides exhibit many biological activities, such as anti-growth, antimicrobial, antiviral, antipathogenic, and antiproliferative activity. The photosensitivity of chlorophyllides that is applied in mercury electrodes and sensors were discussed. This article is the first detailed review dedicated specifically to chlorophyllides. Thus, this review aims to describe the definition of chlorophyllides, biosynthetic routes of chlorophyllides, purification of chlorophyllides, and applications of chlorophyllides.


Assuntos
Técnicas Biossensoriais/métodos , Química Farmacêutica/métodos , Clorofila/análogos & derivados , Clorofilídeos/síntese química , Aditivos Alimentares/química , Protoclorifilida/metabolismo , Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Antineoplásicos Fitogênicos/biossíntese , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/farmacologia , Antivirais/síntese química , Antivirais/farmacologia , Técnicas Biossensoriais/instrumentação , Clorofila/biossíntese , Clorofila/farmacologia , Clorofilídeos/biossíntese , Clorofilídeos/farmacologia , Técnicas Eletroquímicas , Aditivos Alimentares/metabolismo , Humanos , Luz , Estrutura Molecular , Fotossíntese/fisiologia , Plantas/química , Plantas/metabolismo
8.
Mol Genet Genomics ; 296(6): 1249-1262, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34426888

RESUMO

Leaf is the major photosynthesis organ and the key source of wheat (Triticum aestivum L.) grain. Spotted leaf (spl) mutant is a kind of leaf lesion mimic mutants (LMMs) in plants, which is an ideal material for studying the mechanisms of leaf development. In this study, we report the leaf abnormal development molecular mechanism of a spl mutant named white stripe leaf (wsl) derived from wheat cultivar Guomai 301 (WT). Histochemical observation indicated that the leaf mesophyll cells of the wsl were destroyed in the necrosis regions. To explore the molecular regulatory network of the leaf development in mutant wsl, we employed transcriptome analysis, histochemistry, quantitative real-time PCR (qRT-PCR), and observations of the key metabolites and photosynthesis parameters. Compared to WT, the expressions of the chlorophyll synthesis and photosynthesis-related homeotic genes were repressed; many genes in the WRKY transcription factor (TF) families were highly expressed; the salicylic acid (SA) and Ca2+ signal transductions were enhanced in wsl. Both the chlorophyll contents and the photosynthesis rate were lower in wsl. The contents of SA and reactive oxygen species (ROS) were significantly higher, and the leaf rust resistance was enhanced in wsl. Based on the experimental data, a primary molecular regulatory model for leaf development in wsl was established. The results indicated that the SA accumulation and enhanced Ca2+ signaling led to programmed cell death (PCD), and ultimately resulted in spontaneous leaf necrosis of wsl. These results laid a solid foundation for further research on the molecular mechanism of leaf development in wheat.


Assuntos
Apoptose/genética , Cálcio/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Ácido Salicílico/metabolismo , Triticum/genética , Apoptose/fisiologia , Clorofila/biossíntese , Perfilação da Expressão Gênica , Proteínas Nucleares/genética , Fotossíntese/genética , Fotossíntese/fisiologia , Doenças das Plantas/genética , Folhas de Planta/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
9.
Theor Appl Genet ; 134(11): 3773-3784, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34338807

RESUMO

KEY MESSAGE: Using bulked segregant analysis combined with next-generation sequencing, we delimited the pv-ye gene responsible for the golden pod trait of snap bean cultivar A18-1. Sequence analysis identified Phvul.002G006200 as the candidate gene. The pod is the main edible part of snap beans (Phaseolus vulgaris L.). The commercial use of the pods is mainly affected by their color. Consumers seem to prefer golden pods. The aim of the present study was to identify the gene responsible for the golden pod trait in the snap bean. 'A18-1' (a golden bean cultivar) and 'Renaya' (a green bean cultivar) were chosen as the experimental materials. Genetic analysis indicated that a single recessive gene, pv-ye, controls the golden pod trait. A candidate region of 4.24 Mb was mapped to chromosome Pv 02 using bulked-segregant analysis coupled with whole-genome sequencing. In this region, linkage analysis in an F2 population localized the pv-ye gene to an interval of 182.9 kb between the simple sequence repeat markers SSR77 and SSR93. This region comprised 16 genes (12 annotated genes from the P. vulgaris database and 4 functionally unknown genes). Combined with transcriptome sequencing results, we identified Phvul.002G006200 as the potential candidate gene for pv-ye. Sequencing of Phvul.002G006200 identified a single-nucleotide polymorphism (SNP) in pv-ye. A pair of primers covering the SNP were designed, and the fragment was sequenced to screen 1086 F2 plants with the 'A18-1' phenotype. Our findings showed that among the 1086 mapped individuals, the SNP cosegregated with the 'A18-1' phenotype. The findings presented here could form the basis to reveal the molecular mechanism of the golden pod trait in the snap bean.


Assuntos
Genes de Plantas , Genes Recessivos , Phaseolus/genética , Pigmentação/genética , Sequência de Bases , Carotenoides , Clorofila/biossíntese , Mapeamento Cromossômico , Cor , Ligação Genética , Marcadores Genéticos , Repetições de Microssatélites , Fenótipo
10.
Mar Drugs ; 19(6)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204792

RESUMO

Chattonella species, C. marina and C. ovata, are harmful raphidophycean flagellates known to have hemolytic effects on many marine organisms and resulting in massive ecological damage worldwide. However, knowledge of the toxigenic mechanism of these ichthyotoxic flagellates is still limited. Light was reported to be responsible for the hemolytic activity (HA) of Chattonella species. Therefore, the response of photoprotective, photosynthetic accessory pigments, the photosystem II (PSII) electron transport chain, as well as HA were investigated in non-axenic C. marina and C. ovata cultures under variable environmental conditions (light, iron and addition of photosynthetic inhibitors). HA and hydrogen peroxide (H2O2) were quantified using erythrocytes and pHPA assay. Results confirmed that% HA of Chattonella was initiated by light, but was not always elicited during cell division. Exponential growth of C. marina and C. ovata under the light over 100 µmol m-2 s-1 or iron-sufficient conditions elicited high hemolytic activity. Inhibitors of PSII reduced the HA of C. marina, but had no effect on C. ovata. The toxicological response indicated that HA in Chattonella was not associated with the photoprotective system, i.e., xanthophyll cycle and regulation of reactive oxygen species, nor the PSII electron transport chain, but most likely occurred during energy transport through the light-harvesting antenna pigments. A positive, highly significant relationship between HA and chlorophyll (chl) biosynthesis pigments, especially chl c2 and chl a, in both species, indicated that hemolytic toxin may be generated during electron/energy transfer through the chl c2 biosynthesis pathway.


Assuntos
Hemolíticos/metabolismo , Toxinas Marinhas/metabolismo , Fotossíntese/fisiologia , Estramenópilas/metabolismo , Biomarcadores/metabolismo , Clorofila/biossíntese , Clorofila/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Peróxido de Hidrogênio/metabolismo , Toxinas Marinhas/biossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Estramenópilas/patogenicidade
11.
Nat Commun ; 12(1): 4194, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234144

RESUMO

Photomorphogenesis, light-mediated development, is an essential feature of all terrestrial plants. While chloroplast development and brassinosteroid (BR) signaling are known players in photomorphogenesis, proteins that regulate both pathways have yet to be identified. Here we report that DE-ETIOLATION IN THE DARK AND YELLOWING IN THE LIGHT (DAY), a membrane protein containing DnaJ-like domain, plays a dual-role in photomorphogenesis by stabilizing the BR receptor, BRI1, as well as a key enzyme in chlorophyll biosynthesis, POR. DAY localizes to both the endomembrane and chloroplasts via its first transmembrane domain and chloroplast transit peptide, respectively, and interacts with BRI1 and POR in their respective subcellular compartments. Using genetic analysis, we show that DAY acts independently on BR signaling and chlorophyll biogenesis. Collectively, this work uncovers DAY as a factor that simultaneously regulates BR signaling and chloroplast development, revealing a key regulator of photomorphogenesis that acts across cell compartments.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Membrana/metabolismo , Morfogênese/fisiologia , Proteínas Quinases/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brassinosteroides/metabolismo , Clorofila/biossíntese , Cloroplastos/metabolismo , Estiolamento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/isolamento & purificação , Luz , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Morfogênese/efeitos da radiação , Mutação , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , RNA-Seq , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Plântula/crescimento & desenvolvimento , Transdução de Sinais/fisiologia
12.
Genes (Basel) ; 12(5)2021 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066887

RESUMO

Chrysanthemum is one of the most beautiful and popular flowers in the world, and the flower color is an important ornamental trait of chrysanthemum. Compared with other flower colors, green flowers are relatively rare. The formation of green flower color is attributed to the accumulation of chlorophyll; however, the regulatory mechanism of chlorophyll metabolism in chrysanthemum with green flowers remains largely unknown. In this study, we performed Illumina RNA sequencing on three chrysanthemum materials, Chrysanthemum vestitum and Chrysanthemum morifolium cultivars 'Chunxiao' and 'Green anna', which produce white, light green and dark green flowers, respectively. Based on the results of comparative transcriptome analysis, a gene encoding a novel NAC family transcription factor, CmNAC73, was found to be highly correlated to chlorophyll accumulation in the outer whorl of ray florets in chrysanthemum. The results of transient overexpression in chrysanthemum leaves showed that CmNAC73 acts as a positive regulator of chlorophyll biosynthesis. Furthermore, transactivation and yeast one-hybrid assays indicated that CmNAC73 directly binds to the promoters of chlorophyll synthesis-related genes HEMA1 and CRD1. Thus, this study uncovers the transcriptional regulation of chlorophyll synthesis-related genes HEMA1 and CRD1 by CmNAC73 and provides new insights into the development of green flower color in chrysanthemum and chlorophyll metabolism in plants.


Assuntos
Clorofila/biossíntese , Chrysanthemum/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Clorofila/genética , Chrysanthemum/metabolismo , Flores/genética , Flores/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Transcriptoma
13.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070927

RESUMO

Citric acid (CA), as an organic chelator, plays a vital role in alleviating copper (Cu) stress-mediated oxidative damage, wherein a number of molecular mechanisms alter in plants. However, it remains largely unknown how CA regulates differentially abundant proteins (DAPs) in response to Cu stress in Brassica napus L. In the present study, we aimed to investigate the proteome changes in the leaves of B. L. seedlings in response to CA-mediated alleviation of Cu stress. Exposure of 21-day-old seedlings to Cu (25 and 50 µM) and CA (1.0 mM) for 7 days exhibited a dramatic inhibition of overall growth and considerable increase in the enzymatic activities (POD, SOD, CAT). Using a label-free proteome approach, a total of 6345 proteins were identified in differentially treated leaves, from which 426 proteins were differentially expressed among the treatment groups. Gene ontology (GO) and KEGG pathways analysis revealed that most of the differential abundance proteins were found to be involved in energy and carbohydrate metabolism, photosynthesis, protein metabolism, stress and defense, metal detoxification, and cell wall reorganization. Our results suggest that the downregulation of chlorophyll biosynthetic proteins involved in photosynthesis were consistent with reduced chlorophyll content. The increased abundance of proteins involved in stress and defense indicates that these DAPs might provide significant insights into the adaptation of Brassica seedlings to Cu stress. The abundances of key proteins were further verified by monitoring the mRNA expression level of the respective transcripts. Taken together, these findings provide a potential molecular mechanism towards Cu stress tolerance and open a new route in accelerating the phytoextraction of Cu through exogenous application of CA in B. napus.


Assuntos
Brassica napus/efeitos dos fármacos , Ácido Cítrico/farmacologia , Cobre/toxicidade , Poluentes Ambientais/toxicidade , Proteínas de Plantas/genética , Proteoma/genética , Adaptação Fisiológica , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Catalase/genética , Catalase/metabolismo , Clorofila/biossíntese , Ácido Cítrico/metabolismo , Cobre/metabolismo , Poluentes Ambientais/antagonistas & inibidores , Poluentes Ambientais/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Peroxidases/classificação , Peroxidases/genética , Peroxidases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Proteoma/classificação , Proteoma/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Estresse Fisiológico , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
14.
Arch Microbiol ; 203(6): 3565-3575, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33956163

RESUMO

In the chlorophyll biosynthesis pathway, the 8-vinyl group of the chlorophyll precursor is reduced to an ethyl group by 8-vinyl reductase. Two isozymes of 8-vinyl reductase have been described in oxygenic photosynthetic organisms: one encoded by BciA and another by BciB. Only BciB contains an [Fe-S] cluster and most cyanobacteria harbor this form; whereas a few contain BciA. Given this disparity in distribution, cyanobacterial BciA has remained largely overlooked, which has limited understanding of chlorophyll biosynthesis in these microorganisms. Here, we reveal that cyanobacterial BciA encodes a functional 8-vinyl reductase, as evidenced by measuring the in vitro activity of recombinant Synechococcus and Acaryochloris BciA. Genomic comparison revealed that BciB had been replaced by BciA during evolution of the marine cyanobacterium Synechococcus, and coincided with replacement of Fe-superoxide dismutase (SOD) with Ni-SOD. These findings imply that the acquisition of BciA confers an adaptive advantage to cyanobacteria living in low-iron oceanic environments.


Assuntos
Oxirredutases , Synechococcus , Organismos Aquáticos/enzimologia , Organismos Aquáticos/genética , Clorofila/biossíntese , Oxirredutases/genética , Oxirredutases/metabolismo , Fotossíntese , Synechococcus/enzimologia , Synechococcus/genética
15.
Plant Cell ; 33(8): 2834-2849, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34051099

RESUMO

Ferredoxins are single-electron carrier proteins involved in various cellular reactions. In chloroplasts, the most abundant ferredoxin accepts electrons from photosystem I and shuttles electrons via ferredoxin NADP+ oxidoreductase to generate NADPH or directly to ferredoxin dependent enzymes. In addition, plants contain other isoforms of ferredoxins. Two of these, named FdC1 and FdC2 in Arabidopsis thaliana, have C-terminal extensions and functions that are poorly understood. Here we identified disruption of the orthologous FdC2 gene in barley (Hordeum vulgare L.) mutants at the Viridis-k locus; these mutants are deficient in the aerobic cyclase reaction of chlorophyll biosynthesis. The magnesium-protoporphyrin IX monomethyl ester cyclase is one of the least characterized enzymes of the chlorophyll biosynthetic pathway and its electron donor has long been sought. Agroinfiltrations showed that the viridis-k phenotype could be complemented in vivo by Viridis-k but not by canonical ferredoxin. VirK could drive the cyclase reaction in vitro and analysis of cyclase mutants showed that in vivo accumulation of VirK is dependent on cyclase enzyme levels. The chlorophyll deficient phenotype of viridis-k mutants suggests that VirK plays an essential role in chlorophyll biosynthesis that cannot be replaced by other ferredoxins, thus assigning a specific function to this isoform of C-type ferredoxins.


Assuntos
Clorofila/biossíntese , Ferredoxinas/genética , Ferredoxinas/metabolismo , Hordeum/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas , Elétrons , Evolução Molecular , Ferredoxinas/química , Teste de Complementação Genética , Hordeum/genética , Mutação , Filogenia
16.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33975960

RESUMO

Biosyntheses of chlorophyll and heme in oxygenic phototrophs share a common trunk pathway that diverges with insertion of magnesium or iron into the last common intermediate, protoporphyrin IX. Since both tetrapyrroles are pro-oxidants, it is essential that their metabolism is tightly regulated. Here, we establish that heme-derived linear tetrapyrroles (bilins) function to stimulate the enzymatic activity of magnesium chelatase (MgCh) via their interaction with GENOMES UNCOUPLED 4 (GUN4) in the model green alga Chlamydomonas reinhardtii A key tetrapyrrole-binding component of MgCh found in all oxygenic photosynthetic species, CrGUN4, also stabilizes the bilin-dependent accumulation of protoporphyrin IX-binding CrCHLH1 subunit of MgCh in light-grown C. reinhardtii cells by preventing its photooxidative inactivation. Exogenous application of biliverdin IXα reverses the loss of CrCHLH1 in the bilin-deficient heme oxygenase (hmox1) mutant, but not in the gun4 mutant. We propose that these dual regulatory roles of GUN4:bilin complexes are responsible for the retention of bilin biosynthesis in all photosynthetic eukaryotes, which sustains chlorophyll biosynthesis in an illuminated oxic environment.


Assuntos
Pigmentos Biliares/fisiologia , Chlamydomonas reinhardtii/metabolismo , Clorofila/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Cianobactérias/metabolismo , Heme Oxigenase (Desciclizante) , Peptídeos e Proteínas de Sinalização Intracelular/química , Liases/metabolismo , Protoporfirinas/química
17.
PLoS One ; 16(5): e0252031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34043661

RESUMO

The flesh of the taproot of Raphanus sativus L. is rich in chlorophyll (Chl) throughout the developmental process, which is why the flesh is green. However, little is known about which genes are associated with Chl accumulation in this non-foliar, internal green tissue and whether the green flesh can perform photosynthesis. To determine these aspects, we measured the Chl content, examined Chl fluorescence, and carried out comparative transcriptome analyses of taproot flesh between green-fleshed "Cuishuai" and white-fleshed "Zhedachang" across five developmental stages. Numerous genes involved in the Chl metabolic pathway were identified. It was found that Chl accumulation in radish green flesh may be due to the low expression of Chl degradation genes and high expression of Chl biosynthesis genes, especially those associated with Part Ⅳ (from Protoporphyrin Ⅸ to Chl a). Bioinformatics analysis revealed that differentially expressed genes between "Cuishuai" and "Zhedachang" were significantly enriched in photosynthesis-related pathways, such as photosynthesis, antenna proteins, porphyrin and Chl metabolism, carbon fixation, and photorespiration. Twenty-five genes involved in the Calvin cycle were highly expressed in "Cuishuai". These findings suggested that photosynthesis occurred in the radish green flesh, which was also supported by the results of Chl fluorescence. Our study provides transcriptome data on radish taproots and provides new information on the formation and function of radish green flesh.


Assuntos
Clorofila/análogos & derivados , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raphanus/genética , Transcriptoma , Clorofila/biossíntese , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes e Vias Metabólicas/genética , Fotossíntese/genética , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Protoporfirinas/biossíntese , Raphanus/anatomia & histologia , Raphanus/crescimento & desenvolvimento , Raphanus/metabolismo
18.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800795

RESUMO

Plant growth and development are challenged by biotic and abiotic stresses including salinity and heat stresses. For Populus simonii × P. nigra as an important greening and economic tree species in China, increasing soil salinization and global warming have become major environmental challenges. We aim to unravel the molecular mechanisms underlying tree tolerance to salt stress and high temprerature (HT) stress conditions. Transcriptomics revealed that a PsnNAC036 transcription factor (TF) was significantly induced by salt stress in P. simonii × P. nigra. This study focuses on addressing the biological functions of PsnNAC036. The gene was cloned, and its temporal and spatial expression was analyzed under different stresses. PsnNAC036 was significantly upregulated under 150 mM NaCl and 37 °C for 12 h. The result is consistent with the presence of stress responsive cis-elements in the PsnNAC036 promoter. Subcellular localization analysis showed that PsnNAC036 was targeted to the nucleus. Additionally, PsnNAC036 was highly expressed in the leaves and roots. To investigate the core activation region of PsnNAC036 protein and its potential regulatory factors and targets, we conducted trans-activation analysis and the result indicates that the C-terminal region of 191-343 amino acids of the PsnNAC036 was a potent activation domain. Furthermore, overexpression of PsnNAC036 stimulated plant growth and enhanced salinity and HT tolerance. Moreover, 14 stress-related genes upregulated in the transgenic plants under high salt and HT conditions may be potential targets of the PsnNAC036. All the results demonstrate that PsnNAC036 plays an important role in salt and HT stress tolerance.


Assuntos
Genes de Plantas , Resposta ao Choque Térmico/genética , Proteínas de Plantas/fisiologia , Populus/genética , Estresse Salino/genética , Plantas Tolerantes a Sal/genética , Fatores de Transcrição/fisiologia , Sequência de Aminoácidos , Clorofila/biossíntese , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/fisiologia , Regiões Promotoras Genéticas/genética , Salinidade , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Frações Subcelulares/metabolismo , /metabolismo , Fatores de Transcrição/genética , Ativação Transcricional
19.
Molecules ; 26(8)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920363

RESUMO

As one of the common abiotic stresses, chilling stress has negative effects on rice growth and development. Minimization of these adverse effects through various ways is vital for the productivity of rice. Nanoparticles (NPs) serve as one of the effective alleviation methods against abiotic stresses. In our research, zinc oxide (ZnO) NPs were utilized as foliar sprays on rice leaves to explore the mechanism underlying the effect of NPs against the negative impact of chilling stress on rice seedlings. We revealed that foliar application of ZnO NPs significantly alleviated chilling stress in hydroponically grown rice seedlings, including improved plant height, root length, and dry biomass. Besides, ZnO NPs also restored chlorophyll accumulation and significantly ameliorated chilling-induced oxidative stress with reduced levels of H2O2, MDA, proline, and increased activities of major antioxidative enzymes, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). We further found that foliar application of ZnO NPs induced the chilling-induced gene expression of the antioxidative system (OsCu/ZnSOD1, OsCu/ZnSOD2, OsCu/ZnSOD3, OsPRX11, OsPRX65, OsPRX89, OsCATA, and OsCATB) and chilling response transcription factors (OsbZIP52, OsMYB4, OsMYB30, OsNAC5, OsWRKY76, and OsWRKY94) in leaves of chilling-treated seedlings. Taken together, our results suggest that foliar application of ZnO NPs could alleviate chilling stress in rice via the mediation of the antioxidative system and chilling response transcription factors.


Assuntos
Antioxidantes/farmacologia , Clorofila/biossíntese , Nanopartículas/química , Oryza/efeitos dos fármacos , Fatores de Transcrição/genética , Óxido de Zinco/farmacologia , Catalase/genética , Catalase/metabolismo , Clorofila/agonistas , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Hidroponia/métodos , Malondialdeído/metabolismo , Nanopartículas/ultraestrutura , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/genética , Peroxidase/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Prolina/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Fatores de Transcrição/agonistas , Fatores de Transcrição/metabolismo
20.
BMC Plant Biol ; 21(1): 172, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33838654

RESUMO

BACKGROUND: Leaf color is an important trait in breeding of leafy vegetables. Y-05, a pakchoi (Brassica rapa ssp. chinensis) cultivar, displays yellow inner (YIN) and green outer leaves (GOU) after cold acclimation. However, the mechanism of this special phenotype remains elusive. RESULTS: We assumed that the yellow leaf phenotype of Y-05 maybe caused by low chlorophyll content. Pigments measurements and transmission electron microscopy (TEM) analysis showed that the yellow phenotype is closely related with decreased chlorophyll content and undeveloped thylakoids in chloroplast. Transcriptomes and metabolomes sequencing were next performed on YIN and GOU. The transcriptomes data showed that 4887 differentially expressed genes (DEGs) between the YIN and GOU leaves were mostly enriched in the chloroplast- and chlorophyll-related categories, indicating that the chlorophyll biosynthesis is mainly affected during cold acclimation. Together with metabolomes data, the inhibition of chlorophyll biosynthesis is contributed by blocked 5-aminolevulinic acid (ALA) synthesis in yellow inner leaves, which is further verified by complementary and inhibitory experiments of ALA. Furthermore, we found that the blocked ALA is closely associated with increased BrFLU expression, which is indirectly altered by cold acclimation. In BrFLU-silenced pakchoi Y-05, cold-acclimated leaves still showed green phenotype and higher chlorophyll content compared with control, meaning silencing of BrFLU can rescue the leaf yellowing induced by cold acclimation. CONCLUSIONS: Our findings suggested that cold acclimation can indirectly promote the expression of BrFLU in inner leaves of Y-05 to block ALA synthesis, resulting in decreased chlorophyll content and leaf yellowing. This study revealed the underlying mechanisms of leaves color change in cold-acclimated Y-05.


Assuntos
Aclimatação , Brassica rapa/fisiologia , Clorofila/biossíntese , Temperatura Baixa , Folhas de Planta/metabolismo , Cor , Microscopia Eletrônica de Transmissão , Pigmentação/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...